In-Situ Resources for the Moon, Mars, and Phobos: Elemental Concentrations

David J. Lawrence
Johns Hopkins University Applied Physics Laboratory
Resource Questions

- **What are the resources, and where are they?**
- **How sure are we?**
- **What is needed to verify amount and accessibility of the resource?**

- Perspective from elemental abundances
 - Measured with gamma-ray/neutron spectroscopy
 - Bulk abundances to depths of 10s of cm
 - Focus on volatiles (mostly bulk hydrogen)
 - Knowledge exists of other elements
 - Complementary to mineral abundances

- Where: three main destinations
 - Moon
 - Phobos
 - Mars
Resources on the Moon: Hydrogen

• What/where:
 - 0.1 wt.% to ~10 wt.% H_2O equivalent hydrogen
 - Permanently shaded craters at lunar poles

• Certainty:
 - Exact concentrations and locations are highly uncertain

• Getting more information:
 - Orbital measurements: low-altitude neutron (Luna H map; future missions)
 - Landed missions (rovers) in permanently shaded craters

Enhanced hydrogen abundances at lunar poles indicated by dark colors
Resources on the Moon: Other elements

Iron

Titanium

Thorium

Hydrogen
Resources on Phobos

• What/where:
 - Hints of volatiles

• Certainty:
 - Amounts and locations are uncertain

• Getting more information:
 - Japanese Martian Moons eXploration (MMX) mission (launch 2024)
 - Comprehensive remote sensing; elemental abundances from NASA-funded MEGANE instrument
 - Return sample to Earth in 2029

Image of ~20-km diameter Phobos, moon of Mars
Resources on Mars: Hydrogen/water ice

• What/where:
 - Hydrogen/water ice ranging from 2 wt.% H₂O (equatorial regions) to 100 wt.% (polar regions)

• Certainty
 - Amounts & locations have good certainty, but with broad spatial knowledge of few hundred km

• Getting more information
 - Better spatial knowledge with airplane/balloon missions
 - Landed rovers (e.g., Mars Science Laboratory neutron measurements)