The Ultimate Goal: Refining Constraints for Human Landing Site Selection

47 Exploration Zone Candidates proposed at the 2015 NASA Mars Human Landing Site Workshop
Overview of Mars Water ISRU Planning (M-WIP) Study Results

May 15, 2019 Pre-Decisional Information -- For Planning and Discussion Purposes Only

The ranked value of information for assessing potential for engineering viability

<table>
<thead>
<tr>
<th>CASE</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Ice+open pit)</td>
<td>Thickness of overburden</td>
<td>Mechanical properties of overburden</td>
<td>Mechanical consistency of ore deposit</td>
</tr>
<tr>
<td>A2 (Ice+subsurface)</td>
<td>Mechanical consistency of ore deposit</td>
<td>Thickness of overburden</td>
<td>Mechanical properties of overburden</td>
</tr>
<tr>
<td>B (hydrated sulfate)</td>
<td>2D geometry/size of ore deposit</td>
<td>Mechanical consistency of ore deposit</td>
<td>Distance to processing plant</td>
</tr>
<tr>
<td>C (clay)</td>
<td>2D geometry/size of ore deposit</td>
<td>Mechanical consistency of ore deposit</td>
<td>Distance to processing plant</td>
</tr>
<tr>
<td>D (regolith)</td>
<td>Water concentration of ore deposit</td>
<td>Mechanical consistency of ore deposit</td>
<td>Chemical properties of ore deposit</td>
</tr>
</tbody>
</table>

Source: M-WIP (2016)

Purple: Data can be measured from orbit

Green: Data needs to be measured on the ground, *in situ*
Subsurface Ice
Survey of locations with geomorphological features that are indicative of subsurface ice

Hydrated Minerals
Survey of detections of spectral signatures of major classes of hydrated minerals

From: Dickson et al., 2012

From Ehlmann and Edwards (2014)
Mars Water Mapping Project Teams

Task A – Subsurface Ice Mapping

<table>
<thead>
<tr>
<th>Team 1</th>
<th>Team 2</th>
</tr>
</thead>
</table>
| Putzig et al. (PSI)
Mapping Buried Water Ice in Arcadia & Beyond with Radar & Thermal Data | Morgan et al. (PSI)
Local Subsurface Ice Mapping Through the Integration of SHARAD Derived Data Products with Other Datasets |

Depth of shallow subsurface reflectors over Arcadia Planitia, (color = depth, yellow symbols = features used to constrain dielectric constant) [Putzig et al.]

SHARAD Corrected Power (dB)

SHARAD Power Return Map over Arcadia Planitia. Blue areas indicate potential ice within the top ~5m of the surface. Left to right is 0-60°N latitude [Morgan et al.]

Task B – Hydrated Minerals Mapping

<table>
<thead>
<tr>
<th>Team 1</th>
<th>Team 2</th>
</tr>
</thead>
</table>
| Carter et al. (Paris-Sud Univ.)
A Global Aqueous Mineral Abundance Catalog for Mars | Seelos et al. (APL)
CRISM-Derived Global Map of Hydrated Mineral Bearing Units |

Global Map of Areal Extent of Hydrated Mineral Detections [Carter et al.]

Map of two types of hydrated minerals and bound water over the Mars 2020 Nili Site Candidates [Seelos et al.]
Subsurface Water Ice – Preliminary Northern Hemisphere Map

Datasets used: MONS, TES, THEMIS, SHARAD, Geomorphology (imagery and elevation data)

Multiple datasets show indications of ice within 0-100m of surface

Region not mapped due to high elevation (not landable by human-class vehicles)

Arcadia Study Region

White dots = Fresh ice exposing impacts mapped by Dundas et al. [2014] showing good agreement between this map and observed data

Map of boundaries of thickness of ice-rich deposits over the Arcadia study region, indicating a subsurface ice-rich deposit of 15-60m thickness throughout the region
A pilot study performed by the SWIM team over the Arcadia Planitia region improved the previous state of the art by:

1. Extending reflector mapping coverage over region
2. Detecting more equatorward ice at \(\sim 35.6^\circ \text{N} \) (compared to \(\sim 39^\circ \text{N} \) previously)
 - Eases thermal design requirements landed ice exploration missions
3. Incorporating 19 additional topographic features to better refine the dielectric constant and hence estimate of material composition
 - Updated results indicate a larger fraction of non-ice material in the subsurface

Previous state of the art over Arcadia Planitia:
Bramson et al. 2015

SWIM Project:
- Increased coverage
- Refined dielectric constants (material composition)
- More-equatorward detections
Hydrated Minerals Mapping Preliminary Results

[Preliminary] Global map of mineral detections compiled from the entire OMEGA dataset by Carter et al.

[Preliminary] Map of the strength of the D2300 spectral feature (corresponding to the presence of Fe/Mg phyllosilicates and Mg-carbonate) over Jezero Crater and the Nili Fossae Region by Seelos et al.

Perspective view of Jezero delta

- Mg Carbonate + Brucite (Mg)
- Fe/Mg clay, serpentine
- Kaolins & silica
- Akaganeite (Fe,Cl)
- Sulfate
Potential Future Uses of Mars Water Maps

Informing Future Orbital Science / Reconnaissance
Provide targets and requirements for potential future orbiter mission(s) carrying new instruments to better characterize the distribution and depth of hydrated minerals and subsurface water ice deposits.

Guiding Future Surface Science / Reconnaissance
Revealing landing site options for a potential future landed ground truthing mission that will validate orbital measurements and further characterize possible water feedstocks.

Selecting Humans Landing Sites / Exploration Zones
Supporting human landing site selection activities and ongoing architecture studies for future human surface systems.
Thank You!

For more information on the water maps, visit:
https://www.nasa.gov/journeytomars/mars-exploration-zones and https://swim.psi.edu

Pre-Decisional Information -- For Planning and Discussion Purposes Only